AbstractDTO#

Litestar maintains a suite of DTO factory types that can be used to create DTOs for use with popular data modelling libraries, such as ORMs. These take a model type as a generic type argument, and create subtypes of AbstractDTO that support conversion of that model type to and from raw bytes.

The following factories are currently available:

Using DTO Factories#

DTO factories are used to create DTOs for use with a particular data modelling library. The following example creates a DTO for use with a SQLAlchemy model:

A SQLAlchemy model DTO#
from datetime import datetime

from sqlalchemy.orm import Mapped

from litestar import Litestar, post
from litestar.contrib.sqlalchemy.dto import SQLAlchemyDTO

from .my_lib import Base


class User(Base):
    name: Mapped[str]
    password: Mapped[str]
    created_at: Mapped[datetime]


UserDTO = SQLAlchemyDTO[User]


@post("/users", dto=UserDTO, sync_to_thread=False)
def create_user(data: User) -> User:
    return data


app = Litestar(route_handlers=[create_user])

Run it

> curl http://127.0.0.1:8000/users -H Content-Type: application/json -d {"name":"Litestar User","password":"xyz","created_at":"2023-04-24T00:00:00Z"}
{"id":"3bf80335-5a2c-4f64-ad3a-a82004669c78","name":"Litestar User","password":"xyz","created_at":"2023-04-24T00:00:00Z"}

Here we see that a SQLAlchemy model is used as both the data and return annotation for the handler, and while Litestar does not natively support encoding/decoding to/from SQLAlchemy models, through SQLAlchemyDTO we can do this.

However, we do have some issues with the above example. Firstly, the user’s password has been returned to them in the response from the handler. Secondly, the user is able to set the created_at field on the model, which should only ever be set once, and defined internally.

Let’s explore how we can configure DTOs to manage scenarios like these.

Marking fields#

The dto_field function can be used to mark model attributes with DTO-based configuration.

Fields marked as "private" or "read-only" will not be parsed from client data into the user model, and "private" fields are never serialized into return data.

Marking fields#
 1from datetime import datetime
 2
 3from sqlalchemy.orm import Mapped, mapped_column
 4
 5from litestar import Litestar, post
 6from litestar.contrib.sqlalchemy.dto import SQLAlchemyDTO
 7from litestar.dto import dto_field
 8
 9from .my_lib import Base
10
11
12class User(Base):
13    name: Mapped[str]
14    password: Mapped[str] = mapped_column(info=dto_field("private"))
15    created_at: Mapped[datetime] = mapped_column(info=dto_field("read-only"))
16
17
18UserDTO = SQLAlchemyDTO[User]
19
20
21@post("/users", dto=UserDTO, sync_to_thread=False)
22def create_user(data: User) -> User:
23    # even though the client sent the password and created_at field, it is not in the data object
24    assert "password" not in vars(data)
25    assert "created_at" not in vars(data)
26    # normally the database would set the created_at timestamp
27    data.created_at = datetime.min
28    return data  # the response includes the created_at field
29
30
31app = Litestar(route_handlers=[create_user])

Run it

> curl http://127.0.0.1:8000/users -H Content-Type: application/json -d {"name":"Litestar User","password":"xyz","created_at":"2023-04-24T00:00:00Z"}
{"created_at":"0001-01-01T00:00:00","id":"a0e58059-9e9e-4b5b-ac72-d2e57fc3a83e","name":"Litestar User"}

Excluding fields#

Fields can be explicitly excluded using DTOConfig.

The following example demonstrates excluding attributes from the serialized response, including excluding fields from nested models.

Excluding fields#
 1from datetime import datetime
 2from typing import List
 3from uuid import UUID
 4
 5from sqlalchemy import ForeignKey
 6from sqlalchemy.orm import Mapped, mapped_column, relationship
 7from typing_extensions import Annotated
 8
 9from litestar import Litestar, post
10from litestar.contrib.sqlalchemy.dto import SQLAlchemyDTO
11from litestar.dto import DTOConfig, dto_field
12
13from .my_lib import Base
14
15
16class Address(Base):
17    street: Mapped[str]
18    city: Mapped[str]
19    state: Mapped[str]
20    zip: Mapped[str]
21
22
23class Pets(Base):
24    name: Mapped[str]
25    user_id: Mapped[UUID] = mapped_column(ForeignKey("user.id"))
26
27
28class User(Base):
29    name: Mapped[str]
30    password: Mapped[str] = mapped_column(info=dto_field("private"))
31    created_at: Mapped[datetime] = mapped_column(info=dto_field("read-only"))
32    address_id: Mapped[UUID] = mapped_column(ForeignKey("address.id"), info=dto_field("private"))
33    address: Mapped[Address] = relationship(info=dto_field("read-only"))
34    pets: Mapped[List[Pets]] = relationship(info=dto_field("read-only"))
35
36
37UserDTO = SQLAlchemyDTO[User]
38config = DTOConfig(
39    exclude={
40        "id",
41        "address.id",
42        "address.street",
43        "pets.0.id",
44        "pets.0.user_id",
45    }
46)
47ReadUserDTO = SQLAlchemyDTO[Annotated[User, config]]
48
49
50@post("/users", dto=UserDTO, return_dto=ReadUserDTO, sync_to_thread=False)
51def create_user(data: User) -> User:
52    data.created_at = datetime.min
53    data.address = Address(street="123 Main St", city="Anytown", state="NY", zip="12345")
54    data.pets = [Pets(id=1, name="Fido"), Pets(id=2, name="Spot")]
55    return data
56
57
58app = Litestar(route_handlers=[create_user])
Excluding fields#
 1from datetime import datetime
 2from uuid import UUID
 3
 4from sqlalchemy import ForeignKey
 5from sqlalchemy.orm import Mapped, mapped_column, relationship
 6from typing import Annotated
 7
 8from litestar import Litestar, post
 9from litestar.contrib.sqlalchemy.dto import SQLAlchemyDTO
10from litestar.dto import DTOConfig, dto_field
11
12from .my_lib import Base
13
14
15class Address(Base):
16    street: Mapped[str]
17    city: Mapped[str]
18    state: Mapped[str]
19    zip: Mapped[str]
20
21
22class Pets(Base):
23    name: Mapped[str]
24    user_id: Mapped[UUID] = mapped_column(ForeignKey("user.id"))
25
26
27class User(Base):
28    name: Mapped[str]
29    password: Mapped[str] = mapped_column(info=dto_field("private"))
30    created_at: Mapped[datetime] = mapped_column(info=dto_field("read-only"))
31    address_id: Mapped[UUID] = mapped_column(ForeignKey("address.id"), info=dto_field("private"))
32    address: Mapped[Address] = relationship(info=dto_field("read-only"))
33    pets: Mapped[list[Pets]] = relationship(info=dto_field("read-only"))
34
35
36UserDTO = SQLAlchemyDTO[User]
37config = DTOConfig(
38    exclude={
39        "id",
40        "address.id",
41        "address.street",
42        "pets.0.id",
43        "pets.0.user_id",
44    }
45)
46ReadUserDTO = SQLAlchemyDTO[Annotated[User, config]]
47
48
49@post("/users", dto=UserDTO, return_dto=ReadUserDTO, sync_to_thread=False)
50def create_user(data: User) -> User:
51    data.created_at = datetime.min
52    data.address = Address(street="123 Main St", city="Anytown", state="NY", zip="12345")
53    data.pets = [Pets(id=1, name="Fido"), Pets(id=2, name="Spot")]
54    return data
55
56
57app = Litestar(route_handlers=[create_user])

Run it

> curl http://127.0.0.1:8000/users -H Content-Type: application/json -d {"name":"Litestar User","password":"xyz","created_at":"2023-04-24T00:00:00Z"}
{"created_at":"0001-01-01T00:00:00","address":{"city":"Anytown","state":"NY","zip":"12345"},"pets":[{"name":"Fido"},{"name":"Spot"}],"name":"Litestar User"}

Here, the config is created with the exclude parameter, which is a set of strings. Each string represents the path to a field in the User object that should be excluded from the output DTO.

config = DTOConfig(
    exclude={
        "id",
        "address.id",
        "address.street",
        "pets.0.id",
        "pets.0.user_id",
    }
)

In this example, "id" represents the id field of the User object, "address.id" and "address.street" represent fields of the Address object nested inside the User object, and "pets.0.id" and "pets.0.user_id" represent fields of the Pets objects nested within the list of User.pets.

Note

Given a generic type, with an arbitrary number of type parameters (e.g., GenericType[Type0, Type1, ..., TypeN]), we use the index of the type parameter to indicate which type the exclusion should refer to. For example, a.0.b, excludes the b field from the first type parameter of a, a.1.b excludes the b field from the second type parameter of a, and so on.

Renaming fields#

Fields can be renamed using DTOConfig. The following example uses the name userName client-side, and user internally.

Renaming fields#
 1from datetime import datetime
 2
 3from sqlalchemy.orm import Mapped, mapped_column
 4from typing_extensions import Annotated
 5
 6from litestar import Litestar, post
 7from litestar.contrib.sqlalchemy.dto import SQLAlchemyDTO
 8from litestar.dto import DTOConfig, dto_field
 9
10from .my_lib import Base
11
12
13class User(Base):
14    name: Mapped[str]
15    password: Mapped[str] = mapped_column(info=dto_field("private"))
16    created_at: Mapped[datetime] = mapped_column(info=dto_field("read-only"))
17
18
19config = DTOConfig(rename_fields={"name": "userName"})
20UserDTO = SQLAlchemyDTO[Annotated[User, config]]
21
22
23@post("/users", dto=UserDTO, sync_to_thread=False)
24def create_user(data: User) -> User:
25    assert data.name == "Litestar User"
26    data.created_at = datetime.min
27    return data
28
29
30app = Litestar(route_handlers=[create_user])
Renaming fields#
 1from datetime import datetime
 2
 3from sqlalchemy.orm import Mapped, mapped_column
 4from typing import Annotated
 5
 6from litestar import Litestar, post
 7from litestar.contrib.sqlalchemy.dto import SQLAlchemyDTO
 8from litestar.dto import DTOConfig, dto_field
 9
10from .my_lib import Base
11
12
13class User(Base):
14    name: Mapped[str]
15    password: Mapped[str] = mapped_column(info=dto_field("private"))
16    created_at: Mapped[datetime] = mapped_column(info=dto_field("read-only"))
17
18
19config = DTOConfig(rename_fields={"name": "userName"})
20UserDTO = SQLAlchemyDTO[Annotated[User, config]]
21
22
23@post("/users", dto=UserDTO, sync_to_thread=False)
24def create_user(data: User) -> User:
25    assert data.name == "Litestar User"
26    data.created_at = datetime.min
27    return data
28
29
30app = Litestar(route_handlers=[create_user])

Run it

> curl http://127.0.0.1:8000/users -H Content-Type: application/json -d {"userName":"Litestar User","password":"xyz","created_at":"2023-04-24T00:00:00Z"}
{"created_at":"0001-01-01T00:00:00","id":"7f56f10d-cdce-416f-8fcf-cb80d91efd5f","userName":"Litestar User"}

Fields can also be renamed using a renaming strategy that will be applied to all fields. The following example uses a pre-defined rename strategy that will convert all field names to camel case on client-side.

Renaming fields#
 1from datetime import datetime
 2
 3from sqlalchemy.orm import Mapped, mapped_column
 4from typing_extensions import Annotated
 5
 6from litestar import Litestar, post
 7from litestar.contrib.sqlalchemy.dto import SQLAlchemyDTO
 8from litestar.dto import DTOConfig, dto_field
 9
10from .my_lib import Base
11
12
13class User(Base):
14    first_name: Mapped[str]
15    password: Mapped[str] = mapped_column(info=dto_field("private"))
16    created_at: Mapped[datetime] = mapped_column(info=dto_field("read-only"))
17
18
19config = DTOConfig(rename_strategy="camel")
20# another rename strategy with a custom callback:
21# config = DTOConfig(rename_strategy=lambda x: f"-{x}-")
22UserDTO = SQLAlchemyDTO[Annotated[User, config]]
23
24
25@post("/users", dto=UserDTO, sync_to_thread=False)
26def create_user(data: User) -> User:
27    assert data.first_name == "Litestar User"
28    data.created_at = datetime.min
29    return data
30
31
32app = Litestar(route_handlers=[create_user])
Renaming fields#
 1from datetime import datetime
 2
 3from sqlalchemy.orm import Mapped, mapped_column
 4from typing import Annotated
 5
 6from litestar import Litestar, post
 7from litestar.contrib.sqlalchemy.dto import SQLAlchemyDTO
 8from litestar.dto import DTOConfig, dto_field
 9
10from .my_lib import Base
11
12
13class User(Base):
14    first_name: Mapped[str]
15    password: Mapped[str] = mapped_column(info=dto_field("private"))
16    created_at: Mapped[datetime] = mapped_column(info=dto_field("read-only"))
17
18
19config = DTOConfig(rename_strategy="camel")
20# another rename strategy with a custom callback:
21# config = DTOConfig(rename_strategy=lambda x: f"-{x}-")
22UserDTO = SQLAlchemyDTO[Annotated[User, config]]
23
24
25@post("/users", dto=UserDTO, sync_to_thread=False)
26def create_user(data: User) -> User:
27    assert data.first_name == "Litestar User"
28    data.created_at = datetime.min
29    return data
30
31
32app = Litestar(route_handlers=[create_user])

Run it

> curl http://127.0.0.1:8000/users -H Content-Type: application/json -d {"firstName":"Litestar User","password":"xyz","createdAt":"2023-04-24T00:00:00Z"}
{"createdAt":"0001-01-01T00:00:00","id":"e6c7e7e3-94c2-4d62-b4e1-b08e98a8bf31","firstName":"Litestar User"}

Fields that are directly renamed using rename_fields mapping will be excluded from rename_strategy.

The rename strategy either accepts one of the pre-defined strategies: “camel”, “pascal”, “upper”, “lower”, or it can be provided a callback that accepts the field name as an argument and should return a string.

Type checking#

Factories check that the types to which they are assigned are a subclass of the type provided as the generic type to the DTO factory. This means that if you have a handler that accepts a User model, and you assign a UserDTO factory to it, the DTO will only accept User types for “data” and return types.

Type checking#
 1from datetime import datetime
 2
 3from sqlalchemy.orm import Mapped, mapped_column
 4
 5from litestar import Litestar, post
 6from litestar.contrib.sqlalchemy.dto import SQLAlchemyDTO
 7from litestar.dto import dto_field
 8
 9from .my_lib import Base
10
11
12class User(Base):
13    name: Mapped[str]
14    password: Mapped[str] = mapped_column(info=dto_field("private"))
15    created_at: Mapped[datetime] = mapped_column(info=dto_field("read-only"))
16
17
18class Foo(Base):
19    foo: Mapped[str]
20
21
22UserDTO = SQLAlchemyDTO[User]
23
24
25@post("/users", dto=UserDTO)
26def create_user(data: Foo) -> Foo:
27    return data
28
29
30# This will raise an exception at handler registration time.
31app = Litestar(route_handlers=[create_user])

In the above example, the handler is declared to use UserDTO which has been type-narrowed with the User type. However, we annotate the handler with the Foo type. This will raise an error such as this at runtime:

litestar.exceptions.dto.InvalidAnnotationException: DTO narrowed with ‘<class ‘docs.examples.data_transfer_objects.factory.type_checking.User’>’, handler type is ‘<class ‘docs.examples.data_transfer_objects.factory.type_checking.Foo’>’

Nested fields#

The depth of related items parsed from client data and serialized into return data can be controlled using the max_nested_depth parameter to DTOConfig.

In this example, we set max_nested_depth=0 for the DTO that handles inbound client data, and leave it at the default of 1 for the return DTO.

Type checking#
 1from __future__ import annotations
 2
 3from uuid import UUID
 4
 5from sqlalchemy import ForeignKey
 6from sqlalchemy.orm import Mapped, mapped_column, relationship
 7from typing_extensions import Annotated
 8
 9from litestar import Litestar, put
10from litestar.contrib.sqlalchemy.dto import SQLAlchemyDTO
11from litestar.dto import DTOConfig
12
13from .my_lib import Base
14
15
16class A(Base):
17    b_id: Mapped[UUID] = mapped_column(ForeignKey("b.id"))
18    b: Mapped[B] = relationship(back_populates="a")
19
20
21class B(Base):
22    a: Mapped[A] = relationship(back_populates="b")
23
24
25data_config = DTOConfig(max_nested_depth=0)
26DataDTO = SQLAlchemyDTO[Annotated[A, data_config]]
27
28# default config sets max_nested_depth to 1
29ReturnDTO = SQLAlchemyDTO[A]
30
31
32@put("/a", dto=DataDTO, return_dto=ReturnDTO, sync_to_thread=False)
33def update_a(data: A) -> A:
34    # this shows that "b" was not parsed out of the inbound data
35    assert "b" not in vars(data)
36    # Now we'll create an instance of B and assign it"
37    # This includes a reference back to ``a`` which is not serialized in the return data
38    # because default ``max_nested_depth`` is set to 1
39    data.b = B(id=data.b_id, a=data)
40    return data
41
42
43app = Litestar(route_handlers=[update_a])
Type checking#
 1from __future__ import annotations
 2
 3from uuid import UUID
 4
 5from sqlalchemy import ForeignKey
 6from sqlalchemy.orm import Mapped, mapped_column, relationship
 7from typing import Annotated
 8
 9from litestar import Litestar, put
10from litestar.contrib.sqlalchemy.dto import SQLAlchemyDTO
11from litestar.dto import DTOConfig
12
13from .my_lib import Base
14
15
16class A(Base):
17    b_id: Mapped[UUID] = mapped_column(ForeignKey("b.id"))
18    b: Mapped[B] = relationship(back_populates="a")
19
20
21class B(Base):
22    a: Mapped[A] = relationship(back_populates="b")
23
24
25data_config = DTOConfig(max_nested_depth=0)
26DataDTO = SQLAlchemyDTO[Annotated[A, data_config]]
27
28# default config sets max_nested_depth to 1
29ReturnDTO = SQLAlchemyDTO[A]
30
31
32@put("/a", dto=DataDTO, return_dto=ReturnDTO, sync_to_thread=False)
33def update_a(data: A) -> A:
34    # this shows that "b" was not parsed out of the inbound data
35    assert "b" not in vars(data)
36    # Now we'll create an instance of B and assign it"
37    # This includes a reference back to ``a`` which is not serialized in the return data
38    # because default ``max_nested_depth`` is set to 1
39    data.b = B(id=data.b_id, a=data)
40    return data
41
42
43app = Litestar(route_handlers=[update_a])

Run it

> curl http://127.0.0.1:8000/a -H Content-Type: application/json -X PUT -d {"id": "6955e63c-c2bc-4707-8fa4-2144d1764746", "b_id": "9cf3518d-7e19-4215-9ec2-e056cac55bf7", "b": {"id": "9cf3518d-7e19-4215-9ec2-e056cac55bf7"}}
{"b_id":"9cf3518d-7e19-4215-9ec2-e056cac55bf7","b":{"id":"9cf3518d-7e19-4215-9ec2-e056cac55bf7"},"id":"6955e63c-c2bc-4707-8fa4-2144d1764746"}

When the handler receives the client data, we can see that the b field has not been parsed into the A model that is injected for our data parameter (line 35).

We then add a B instance to the data (line 39), which includes a reference back to a, and from inspection of the return data can see that b is included in the response data, however b.a is not, due to the default max_nested_depth of 1.

Handling unknown fields#

By default, DTOs will silently ignore unknown fields in the source data. This behaviour can be configured using the forbid_unknown_fields parameter of the DTOConfig. When set to True a validation error response will be returned if the data contains a field not defined on the model:

Type checking#
 1from __future__ import annotations
 2
 3from dataclasses import dataclass
 4
 5from typing_extensions import Annotated
 6
 7from litestar import Litestar, post
 8from litestar.dto import DataclassDTO, DTOConfig
 9
10
11@dataclass
12class User:
13    id: str
14
15
16UserDTO = DataclassDTO[Annotated[User, DTOConfig(forbid_unknown_fields=True)]]
17
18
19@post("/users", dto=UserDTO)
20async def create_user(data: User) -> User:
21    return data
22
23
24app = Litestar([create_user])
Type checking#
 1from __future__ import annotations
 2
 3from dataclasses import dataclass
 4
 5from typing import Annotated
 6
 7from litestar import Litestar, post
 8from litestar.dto import DataclassDTO, DTOConfig
 9
10
11@dataclass
12class User:
13    id: str
14
15
16UserDTO = DataclassDTO[Annotated[User, DTOConfig(forbid_unknown_fields=True)]]
17
18
19@post("/users", dto=UserDTO)
20async def create_user(data: User) -> User:
21    return data
22
23
24app = Litestar([create_user])

Run it

> curl http://127.0.0.1:8000/users -H Content-Type: application/json -d {"id": "1", "name": "Peter"}
{"status_code":400,"detail":"Object contains unknown field `name`"}

DTO Data#

Sometimes we need to be able to access the data that has been parsed and validated by the DTO, but not converted into an instance of our data model.

In the following example, we create a Person model, that is a dataclass with 3 required fields, id, name, and age.

We also create a DTO that doesn’t allow clients to set the id field on the Person model and set it on the handler.

 1from __future__ import annotations
 2
 3from dataclasses import dataclass, field
 4from uuid import UUID, uuid4
 5
 6from litestar import Litestar, post
 7from litestar.dto import DataclassDTO, DTOConfig
 8
 9
10@dataclass
11class User:
12    name: str
13    email: str
14    age: int
15    id: UUID = field(default_factory=uuid4)
16
17
18class UserWriteDTO(DataclassDTO[User]):
19    """Don't allow client to set the id."""
20
21    config = DTOConfig(exclude={"id"})
22
23
24# We need a dto for the handler to parse the request data per the configuration, however,
25# we don't need a return DTO as we are returning a dataclass, and Litestar already knows
26# how to serialize dataclasses.
27@post("/users", dto=UserWriteDTO, return_dto=None, sync_to_thread=False)
28def create_user(data: User) -> User:
29    """Create an user."""
30    return data
31
32
33app = Litestar(route_handlers=[create_user])

Run it

> curl http://127.0.0.1:8000/users -H Content-Type: application/json -d {"name":"Peter","email": "peter@example.com", "age":41}
{"name":"Peter","email":"peter@example.com","age":41,"id":"6501216e-9c83-474f-a7df-ecbd5ee99979"}

Notice that we get a 500 response from the handler - this is because the DTO has attempted to convert the request data into a Person object and failed because it has no value for the required id field.

One way to handle this is to create different models, e.g., we might create a CreatePerson model that has no id field, and decode the client data into that. However, this method can become quite cumbersome when we have a lot of variability in the data that we accept from clients, for example, PATCH requests.

This is where the DTOData class comes in. It is a generic class that accepts the type of the data that it will contain, and provides useful methods for interacting with that data.

 1from dataclasses import dataclass
 2from uuid import UUID, uuid4
 3
 4from litestar import Litestar, post
 5from litestar.dto import DataclassDTO, DTOConfig, DTOData
 6
 7
 8@dataclass
 9class User:
10    name: str
11    email: str
12    age: int
13    id: UUID
14
15
16class UserWriteDTO(DataclassDTO[User]):
17    """Don't allow client to set the id."""
18
19    config = DTOConfig(exclude={"id"})
20
21
22@post("/users", dto=UserWriteDTO, return_dto=None, sync_to_thread=False)
23def create_user(data: DTOData[User]) -> User:
24    """Create an user."""
25    return data.create_instance(id=uuid4())
26
27
28app = Litestar(route_handlers=[create_user])

Run it

> curl http://127.0.0.1:8000/users -H Content-Type: application/json -d {"name":"Peter", "email": "peter@example.com", "age":41}
{"name":"Peter","email":"peter@example.com","age":41,"id":"6accd4e0-ccea-487e-ba53-48423cc60c33"}

In the above example, we’ve injected an instance of DTOData into our handler, and have used that to create our Person instance, after augmenting the client data with a server generated id value.

Consult the Reference Docs for more information on the methods available.

Providing values for nested data#

To augment data used to instantiate our model instances, we can provide keyword arguments to the create_instance() method.

Sometimes we need to provide values for nested data, for example, when creating a new instance of a model that has a nested model with excluded fields.

 1from __future__ import annotations
 2
 3from dataclasses import dataclass
 4
 5from litestar import Litestar, post
 6from litestar.dto import DataclassDTO, DTOConfig, DTOData
 7
 8
 9@dataclass
10class Address:
11    id: int
12    street: str
13
14
15@dataclass
16class Person:
17    id: int
18    name: str
19    age: int
20    address: Address
21
22
23class ReadDTO(DataclassDTO[Person]):
24    config = DTOConfig()
25
26
27class WriteDTO(DataclassDTO[Person]):
28    config = DTOConfig(exclude={"id", "address.id"})
29
30
31@post("/person", dto=WriteDTO, return_dto=ReadDTO, sync_to_thread=False)
32def create_person(data: DTOData[Person]) -> Person:
33    # Logic for persisting the person goes here
34    return data.create_instance(id=1, address__id=2)
35
36
37app = Litestar(route_handlers=[create_person])

Run it

> curl http://127.0.0.1:8000/person -H Content-Type: application/json -d {"name":"Peter","age":41, "address": {"street": "Fake Street"}}
{"id":1,"name":"Peter","age":41,"address":{"id":2,"street":"Fake Street"}}

The double-underscore syntax address__id passed as a keyword argument to the create_instance() method call is used to specify a value for a nested attribute. In this case, it’s used to provide a value for the id attribute of the Address instance nested within the Person instance.

This is a common convention in Python for dealing with nested structures. The double underscore can be interpreted as “traverse through”, so address__id means “traverse through address to get to id”.

In the context of this script, create_instance(id=1, address__id=2) is saying “create a new Person instance from the client data given an id of 1, and supplement the client address data with an id of 2”.

DTO Factory and PATCH requests#

PATCH requests are a special case when it comes to data transfer objects. The reason for this is that we need to be able to accept and validate any subset of the model attributes in the client payload, which requires some special handling internally.

 1from __future__ import annotations
 2
 3from dataclasses import dataclass
 4from uuid import UUID
 5
 6from litestar import Litestar, patch
 7from litestar.dto import DataclassDTO, DTOConfig, DTOData
 8
 9
10@dataclass
11class Person:
12    id: UUID
13    name: str
14    age: int
15
16
17class PatchDTO(DataclassDTO[Person]):
18    """Don't allow client to set the id, and allow partial updates."""
19
20    config = DTOConfig(exclude={"id"}, partial=True)
21
22
23database = {
24    UUID("f32ff2ce-e32f-4537-9dc0-26e7599f1380"): Person(
25        id=UUID("f32ff2ce-e32f-4537-9dc0-26e7599f1380"), name="Peter", age=40
26    )
27}
28
29
30@patch("/person/{person_id:uuid}", dto=PatchDTO, return_dto=None, sync_to_thread=False)
31def update_person(person_id: UUID, data: DTOData[Person]) -> Person:
32    """Create a person."""
33    return data.update_instance(database.get(person_id))
34
35
36app = Litestar(route_handlers=[update_person])

Run it

> curl http://127.0.0.1:8000/person/f32ff2ce-e32f-4537-9dc0-26e7599f1380 -X PATCH -H Content-Type: application/json -d {"name":"Peter Pan"}
{"id":"f32ff2ce-e32f-4537-9dc0-26e7599f1380","name":"Peter Pan","age":40}

The PatchDTO class is defined for the Person class. The config attribute of PatchDTO is set to exclude the id field, preventing clients from setting it when updating a person, and the partial attribute is set to True, which allows the DTO to accept a subset of the model attributes.

Inside the handler, the DTOData.update_instance method is called to update the instance of Person before returning it.

In our request, we set only the name property of the Person, from "Peter" to "Peter Pan" and received the full object - with the modified name - back in the response.

Implicit Private Fields#

Fields that are named with a leading underscore are considered “private” by default. This means that they will not be parsed from client data, and will not be serialized into return data.

 1from dataclasses import dataclass
 2
 3from litestar import Litestar, post
 4from litestar.dto import DataclassDTO
 5
 6
 7@dataclass
 8class Foo:
 9    this_will: str
10    _this_will: str = "Mars"
11
12
13@post("/", dto=DataclassDTO[Foo], sync_to_thread=False)
14def handler(data: Foo) -> Foo:
15    return data
16
17
18app = Litestar(route_handlers=[handler])

Run it

> curl http://127.0.0.1:8000/ -H Content-Type: application/json -d {"bar":"stay","_baz":"go_away!"}
{"status_code":400,"detail":"Object missing required field `this_will`"}

This can be overridden by setting the DTOConfig.leading_underscore_private attribute to False.

 1from dataclasses import dataclass
 2
 3from litestar import Litestar, post
 4from litestar.dto import DataclassDTO, DTOConfig
 5
 6
 7@dataclass
 8class Foo:
 9    this_will: str
10    _this_will: str = "not_go_away!"
11
12
13class DTO(DataclassDTO[Foo]):
14    config = DTOConfig(underscore_fields_private=False)
15
16
17@post("/", dto=DTO, sync_to_thread=False)
18def handler(data: Foo) -> Foo:
19    return data
20
21
22app = Litestar(route_handlers=[handler])

Run it

> curl http://127.0.0.1:8000/ -H Content-Type: application/json -d {"this_will":"stay","_this_will":"not_go_away!"}
{"this_will":"stay","_this_will":"not_go_away!"}

Wrapping Return Data#

Litestar’s DTO Factory types are versatile enough to manage your data, even when it’s nested within generic wrappers.

The following example demonstrates a route handler that returns DTO managed data wrapped in a generic type. The wrapper is used to deliver additional metadata about the response - in this case, a count of the number of items returned. Read on for an explanation of how to do this yourself.

Enveloping Return Data#
 1from dataclasses import dataclass
 2from datetime import datetime
 3from typing import Generic, List, TypeVar
 4
 5from sqlalchemy.orm import Mapped
 6
 7from litestar import Litestar, get
 8from litestar.contrib.sqlalchemy.dto import SQLAlchemyDTO
 9from litestar.dto import DTOConfig
10
11from .my_lib import Base
12
13T = TypeVar("T")
14
15
16@dataclass
17class WithCount(Generic[T]):
18    count: int
19    data: List[T]
20
21
22class User(Base):
23    name: Mapped[str]
24    password: Mapped[str]
25    created_at: Mapped[datetime]
26
27
28class UserDTO(SQLAlchemyDTO[User]):
29    config = DTOConfig(exclude={"password", "created_at"})
30
31
32@get("/users", dto=UserDTO, sync_to_thread=False)
33def get_users() -> WithCount[User]:
34    return WithCount(
35        count=1,
36        data=[
37            User(
38                id=1,
39                name="Litestar User",
40                password="xyz",
41                created_at=datetime.now(),
42            ),
43        ],
44    )
45
46
47app = Litestar(route_handlers=[get_users])
Enveloping Return Data#
 1from dataclasses import dataclass
 2from datetime import datetime
 3from typing import Generic, TypeVar
 4
 5from sqlalchemy.orm import Mapped
 6
 7from litestar import Litestar, get
 8from litestar.contrib.sqlalchemy.dto import SQLAlchemyDTO
 9from litestar.dto import DTOConfig
10
11from .my_lib import Base
12
13T = TypeVar("T")
14
15
16@dataclass
17class WithCount(Generic[T]):
18    count: int
19    data: list[T]
20
21
22class User(Base):
23    name: Mapped[str]
24    password: Mapped[str]
25    created_at: Mapped[datetime]
26
27
28class UserDTO(SQLAlchemyDTO[User]):
29    config = DTOConfig(exclude={"password", "created_at"})
30
31
32@get("/users", dto=UserDTO, sync_to_thread=False)
33def get_users() -> WithCount[User]:
34    return WithCount(
35        count=1,
36        data=[
37            User(
38                id=1,
39                name="Litestar User",
40                password="xyz",
41                created_at=datetime.now(),
42            ),
43        ],
44    )
45
46
47app = Litestar(route_handlers=[get_users])

Run it

> curl http://127.0.0.1:8000/users
{"count":1,"data":[{"id":1,"name":"Litestar User"}]}

First, create a generic dataclass to act as your wrapper. This type will contain your data and any additional attributes you might need. In this example, we have a WithCount dataclass which has a count attribute. The wrapper must be a python generic type with one or more type parameters, and at least one of those type parameters should describe an instance attribute that will be populated with the data.

from dataclasses import dataclass
from typing import Generic, TypeVar

T = TypeVar("T")


@dataclass
class WithCount(Generic[T]):
    count: int
    data: List[T]

Now, create a DTO for your data object and configure it using DTOConfig. In this example, we’re excluding password and created_at from the final output.

from advanced_alchemy.dto import SQLAlchemyDTO
from litestar.dto import DTOConfig


class UserDTO(SQLAlchemyDTO[User]):
    config = DTOConfig(exclude={"password", "created_at"})

Then, set up your route handler. This example sets up a /users endpoint, where a list of User objects is returned, wrapped in the WithCount dataclass.

from litestar import get


@get("/users", dto=UserDTO, sync_to_thread=False)
def get_users() -> WithCount[User]:
    return WithCount(
        count=1,
        data=[
            User(
                id=1,
                name="Litestar User",
                password="xyz",
                created_at=datetime.now(),
            ),
        ],
    )

This setup allows the DTO to manage the rendering of User objects into the response. The DTO Factory type will find the attribute on the wrapper type that holds the data and perform its serialization operations upon it.

Returning enveloped data is subject to the following constraints:

  1. The type returned from the handler must be a type that Litestar can natively encode.

  2. There can be multiple type arguments to the generic wrapper type, but there must be exactly one type argument to the generic wrapper that is a type supported by the DTO.

Working with Litestar’s Pagination Types#

Litestar offers paginated response wrapper types, and DTO Factory types can handle this out of the box.

Paginated Return Data#
 1from datetime import datetime
 2
 3from sqlalchemy.orm import Mapped
 4
 5from litestar import Litestar, get
 6from litestar.contrib.sqlalchemy.dto import SQLAlchemyDTO
 7from litestar.dto import DTOConfig
 8from litestar.pagination import ClassicPagination
 9
10from .my_lib import Base
11
12
13class User(Base):
14    name: Mapped[str]
15    password: Mapped[str]
16    created_at: Mapped[datetime]
17
18
19class UserDTO(SQLAlchemyDTO[User]):
20    config = DTOConfig(exclude={"password", "created_at"})
21
22
23@get("/users", dto=UserDTO, sync_to_thread=False)
24def get_users() -> ClassicPagination[User]:
25    return ClassicPagination(
26        page_size=10,
27        total_pages=1,
28        current_page=1,
29        items=[
30            User(
31                id=1,
32                name="Litestar User",
33                password="xyz",
34                created_at=datetime.now(),
35            ),
36        ],
37    )
38
39
40app = Litestar(route_handlers=[get_users])

Run it

> curl http://127.0.0.1:8000/users
{"items":[{"id":1,"name":"Litestar User"}],"page_size":10,"current_page":1,"total_pages":1}

The DTO is defined and configured, in our example, we’re excluding password and created_at fields from the final representation of our users.

from advanced_alchemy.dto import SQLAlchemyDTO
from litestar.dto import DTOConfig


class UserDTO(SQLAlchemyDTO[User]):
    config = DTOConfig(exclude={"password", "created_at"})

The example sets up a /users endpoint, where a paginated list of User objects is returned, wrapped in ClassicPagination.

from litestar import get
from litestar.pagination import ClassicPagination


@get("/users", dto=UserDTO, sync_to_thread=False)
def get_users() -> ClassicPagination[User]:
    return ClassicPagination(
        page_size=10,
        total_pages=1,
        current_page=1,
        items=[
            User(
                id=1,
                name="Litestar User",
                password="xyz",
                created_at=datetime.now(),
            ),
        ],
    )

The ClassicPagination class contains page_size (number of items per page), total_pages (total number of pages), current_page (current page number), and items (items for the current page).

The DTO operates on the data contained in the items attribute, and the pagination wrapper is handled automatically by Litestar’s serialization process.

Using Litestar’s Response Type with DTO Factory#

Litestar’s DTO (Data Transfer Object) Factory Types can handle data wrapped in a Response type.

Response Wrapped Return Data#
 1from datetime import datetime
 2
 3from sqlalchemy.orm import Mapped
 4
 5from litestar import Litestar, Response, get
 6from litestar.contrib.sqlalchemy.dto import SQLAlchemyDTO
 7from litestar.dto import DTOConfig
 8
 9from .my_lib import Base
10
11
12class User(Base):
13    name: Mapped[str]
14    password: Mapped[str]
15    created_at: Mapped[datetime]
16
17
18class UserDTO(SQLAlchemyDTO[User]):
19    config = DTOConfig(exclude={"password", "created_at"})
20
21
22@get("/users", dto=UserDTO, sync_to_thread=False)
23def get_users() -> Response[User]:
24    return Response(
25        content=User(
26            id=1,
27            name="Litestar User",
28            password="xyz",
29            created_at=datetime.now(),
30        ),
31        headers={"X-Total-Count": "1"},
32    )
33
34
35app = Litestar(route_handlers=[get_users])

Run it

> curl http://127.0.0.1:8000/users
{"id":1,"name":"Litestar User"}

We create a DTO for the User type and configure it using DTOConfig to exclude password and created_at from the serialized output.

from advanced_alchemy.dto import SQLAlchemyDTO
from litestar.dto import DTOConfig


class UserDTO(SQLAlchemyDTO[User]):
    config = DTOConfig(exclude={"password", "created_at"})

The example sets up a /users endpoint where a User object is returned wrapped in a Response type.

from litestar import get, Response


@get("/users", dto=UserDTO, sync_to_thread=False)
def get_users() -> Response[User]:
    return Response(
        content=User(
            id=1,
            name="Litestar User",
            password="xyz",
            created_at=datetime.now(),
        ),
        headers={"X-Total-Count": "1"},
    )

The Response object encapsulates the User object in its content attribute and allows us to configure the response received by the client. In this case, we add a custom header.